

Phytoremediation of TCE in a Shallow Alluvial Aquifer...A Field Demonstration

Sandra M. Eberts, USGS; Gregory J. Harvey, U.S. Air Force

Objective

To demonstrate in the field the ability of purposefully planted eastern cottonwood trees to help remediate shallow trichloroethylene (TCE) contaminated ground water.

Acknowledgments

- Environmental Security Technology
 Certification Program of the Department of Defense
- Superfund Innovative Technology Evaluation
 Program of the U.S. Environmental
 Protection Agency
- Aeronautical Systems Center/Environmental
 Management Directorate at Wright Patterson AFB

Study Area - Fort Worth, TX

Site Hydrology

- Aquifer Silty Sand, 2 5 feet thick, Aerobic
- Water Table 8 14 feet bls
- Recharge from Precipitation 2.5 in/yr

Scope and Approach

- What Affect Do The Trees Have On The Dissolved TCE Plume?
 - Monitor / model changes in ground-water levels
 - Monitor ground-water geochemistry
 - Compute changes in the mass flux of TCE across the downgradient end of the site

Scope and Approach

- What Is The Fate Of TCE At The Site?
 - Compute tree transpiration rates
 - Investigate enzymatic activity of the trees
 - Investigate microbial activity in the soils
 - Compare concentrations of daughter and parent compounds in the ground water, soil, and tree tissues

Scope and Approach

- How Practical Is The Technology?
 - Document how long it takes for the trees to affect the plume
 - Compare root development between trees of different ages
 - Document how much it costs

Experimental Design

Root Growth

- Roots in both tree stands reached the water table within the first two growing seasons
- Five-gallon bucket trees had overall greater mass and deeper roots than the whips after 17 months
- Notable amount of roots have entered the well screens

(Hendrick, Univ. of Georgia, written commun., 1997)

Ground-water levels and Rainfall October 1996 - July 1997

Transpiration (Summer 1997)

- WHIPS6.2 kg/day (mean)
- 5-GALLON BUCKET TREES
 12 kg/day (mean)

 MATURE COTTONWOOD TREE 1140 -1320 Kg/Day (300-350 gallons per day)

(J.M. Vose, U.S. Forest Service, written commun., 1997)

Hydraulic Control (Modeling Approach)

- Determine required amount of pumpage (Ground-water flow model - MODFLOW / MODMAN)
- Predict future transpiration at demonstration site (Hydrologic model - PROSPER)
- Determine timing of hydraulic control by planted trees (Combined results of MODFLOW and PROSPER)
- Compute mass flux changes attributable to trees (Transport model - MOC3D)

Uptake Rate and Possible Transformation of PCE by Soils and Roots from the Site

(Preliminary)

(Nzengung, Wolfe, and McCutcheon, USEPA, written commun., 1997)

DCE / TCE in Ground Water, July 1997

Reductive Dechlorination of TCE

Trichloroethene

cis-dichloroethene

$$C = C$$

-CI

Vinyl chloride

Ethene

Ground-Water Chemistry Near Mature Tree(s)

- Mature Cottonwood vs. Planted Trees
 - Higher Dissolved Organic Carbon
 - Lower Dissolved Oxygen
 - Higher Total Iron
 - Higher Molecular Hydrogen
 - 25 % Greater Bicarbonate and pCO₂
 - 80% Lower TCE
 - 100 % Greater cis-1,2 DCE
- Other Mature Trees

Altered Redox Conditions and Changes in the cis-1,2 DCE and TCE Signatures

Distribution of Dissolved Oxygen (mg/L), November 1997

(Modified from R.W. Lee, USGS, written commun., 1998)

Distribution of Dissolved Oxygen (mg/L), February 1998

(R.W. Lee, USGS, written commun., 1998)

Distribution of TCE (µg/L) in Ground Water, November 1997

(R.W. Lee, USGS, written commun., 1998)

Distribution of TCE (µg/L) in Ground Water, February 1998

(R.W. Lee, USGS, written commun., 1998)

Partially Validated Process

Root growth results in changed redox conditions in the underlying aquifer, which promotes microbially mediated degradation of dissolved TCE

- Trees introduce labile organic matter into the aquifer
- Dissolved oxygen is subsequently consumed, creating iron reducing conditions
- Reducing conditions lead to reductive dechlorination of TCE in the aquifer

Cost and Performance To Date

- Cost (One acre demonstration site):
 - Treatment system \$63K
- Performance to Date:
 - Roots at water table within 17 months
 - 19-year old tree pumps ~350 gal/day
 - Timing of hydraulic control and changes in mass flux yet to be determined
 - PCE transformed in presence of roots from site
 - Reductive dechlorination occurs in aquifer beneath existing mature trees